Module Contents
This documentation is automatically generated by scanning all the source code. Parts may be incomplete.
DataRaw
- class pyWitness.DataRaw(fileName, excelSheet='data used', dataMapping=None)
Bases:
object
DataRaw : wrapper for raw eyewitness data
- Parameters
fileName (str) – input file name (either csv or excel)
excelSheet (str) – name of the excel sheet to use
dataMapping (map) – python map to change columns and values
- dataSelected
Data frame of selected data for processing
- fileName
Raw data file name
- excelSheet
Excel sheet name
- dataMapping
Map of columns and values for renaming
- data
Data frame of all raw data for processing
- loadData()
Load data from file using panda functions
- Return type
None
- setLineupSize(header)
Set the lineupSize column name in the dataMapping
- Return type
None
- setTargetLineup(header)
Set the targetLineup column name in the dataMapping
- Return type
None
- setTargetLineupPresent(value)
Set the targetPresent value in the dataMapping
- Return type
None
- setTargetLineupAbsent(value)
Set the targetAbsent value in the dataMapping
- Return type
None
- setResponseType(header)
Set the responseType column name in the dataMapping
- Return type
None
- setResponseTypeSuspectId(value)
Set the suspectId value in the dataMapping
- Return type
None
- setResponseTypeFillerId(value)
Set the fillerId value in the dataMapping
- Return type
None
- setResponseTypeRejectId(value)
Set the reject value in the dataMapping
- Return type
None
- descriptiveStatistics(column)
- renameRawData()
Remap column and values to a consistent set
- Return type
None
- checkData()
- columnValues(columnName)
- checkColumn(columnName)
- collapseTargetAbsentSuspectId()
Convert targetAbsent suspectIds to targetAbsent fillerIds
- Returns
- collapseCategoricalData(column='confidence', map={0: 30, 10: 30, 20: 30, 30: 30, 40: 30, 50: 30, 60: 30, 70: 75, 80: 75, 90: 95, 100: 95}, reload=False)
Take values of column and convert to new values in map
- Parameters
column (str) – data column to map
map (map) – value map
reload (bool) – flag to reaload data
- Return type
None
- collapseContinuousData(column='confidence', bins=[- 1, 60, 80, 100], labels=[1, 2, 3])
Take values of column and rebin to new keys in bins
- Parameters
column (str) – data column to create bin catagories
bins (map) – Map of categories and bins
:rtype:None
- resampleWithReplacement()
Resample data with replacement and return copy of object. Required for bootstrapping the confidence interval calcualations
- shuffle()
- resampleParticipantTrial(nTrial=100, iParticipant=0)
- addParticipant(participantId=None, lineupSize=6, targetLineup='targetPresent', responseType='suspectId', confidence=0, n=1)
- cutData(column='', value='', option='keep')
Data to keep
- Parameters
column –
value –
- Returns
- isDesignateId()
- removeDesignates()
- process(column='', condition='', reverseConfidence=False, pAUCLiberal=1.0, levels=None, option='all', dependentVariable='confidence', baseRate=0.5)
Process the raw data and returns DataProcessed object
- Parameters
column (str) – Dataframe column which is tselected for processing
condition (bool) – condition for the column
reverseConfidence – flip the confidence (usually low number to high)
- Return type
- writeCsv(fileName)
Write raw data Dataframe to csv file
- Parameters
fileName (str) – File name of the excel file to write
- writeExcel(fileName, engine='openpyxl')
Write raw data Dataframe to excel file
- Parameters
fileName (str) – File name of the excel file to write
engine (str) – Excel output engine
- Return type
None
DataTranslator
DataProcessed
- class pyWitness.DataProcessed(dataRaw, reverseConfidence=False, lineupSize=1, pAUCLiberal=1.0, levels=None, option='all', dependentVariable='confidence', baseRate=0.5)
Bases:
object
Processed data class
- Parameters
dataRaw (str or DataRaw) – Instance of raw data class or csv file name with binned data
reverseConfidence (bool) – Flag if confidence decreases with increasing numerical value
lineupSize (int) – Number of people in the lineup
- calculatePivot()
Calculate fequency pivot table against ‘confidence’
- Return type
None
- calculateRates()
Calculate cumulative rates from data_pivot. Result stored in data_rates
- Return type
None
- calculateConfidence()
Calculate average confidence for a bin. Result stored in data_rates[‘confidence’]
- calculateRelativeFrequency()
Calculate relative frequency from data_pivot. Result stored in data_rates[‘cf’]
- calculateCAC()
Calculate confidence accuracy characteristic from data_pivot. Result stored in data_rates[‘cac’]
- calculatePAUC(xmax=1.0)
Calculate partial area under the curve from (0,0) to (xmax, y(xmax))
- Parameters
xmax (float) – Upper integration limit
- Return type
float
- calculateNormalisedAUC()
- calculateDPrime()
- calculateConfidenceBootstrap(nBootstraps=200, cl=95, plotROC=False, plotCAC=False)
- comparePAUC(other)
Statistical test compare two pAUCs
- Parameters
other (DataProcessed) – object to compare against
- Returns
- plotROC(label='ROC', relativeFrequencyScale=800, errorType='bars', color=None, alpha=1)
Plot the receiver operating characteristic (ROC) for the data. The symbol size is proportional to relative frequency. If confidence limits are calculated using calculateConfidenceBootstrap they are also plotted
- Parameters
label (str) – plot label for legends
relativeFrequencyScale (float) – scale of relative frequency (RF) to symbol size.
- Return type
None
- plotCAC(relativeFrequencyScale=800, errorType='bars', color=None, label='', oldLabels=None, newLabels=None, alpha=1)
Plot the confidence accuracy characteristic (CAC) for the data. The symbol size is proportional to relative frequency. If confidence limits are calculated using calculateConfidenceBootstrap they are also plotted.
- Parameters
label (str) – plot label for legends
relativeFrequencyScale – scale of relative frequncy (RF) to symbol size.
- Return type
None
- plotRAC()
- plotHitVsFalseAlarmRate()
- printPivot()
- printRates()
- printDescriptiveStats()
- isDesignateId()
- property numberConditions
Number of confidences or other conditions
- Return type
int
- property numberLineups
- property liberalTargetAbsentSuspectId
Returns the maximum targetAbsent suspectId rate
- Return type
float
- property liberalTargetAbsentFillerId
Returns the maximum targetAbsent falseId rate
- Return type
float
- writeRatesCsv(fileName)
Write data_rates Dataframe to CSV file :rtype: None
- writeRatesExcel(fileName, engine='openpyxl')
Write data_rates Dataframe to excel file
- Parameters
fileName (str) – File name of the excel file to write
engine (str) – Excel output engine
- Return type
None
- writePivotCsv(fileName)
Write data_rates Dataframe to CSV file
- Parameters
fileName (str) – File name of the CSV file to write
- Return type
None
- writePivotSimpleCsv(fileName)
Write data_pivot Dataframe to CSV file
- Parameters
fileName (str) – File name of the CSV file to write
- Return type
None
- writePivotExcel(fileName, engine='openpyxl')
Write data_pivot Dataframe to excel file
- Parameters
fileName (str) – File name of the excel file to write
engine (str) – Excel output engine
- Return type
None
ModelFit
- class pyWitness.ModelFitIndependentObservation(processedData, debug=False, integrationSigma=8, chi2Var='expected')
Bases:
pyWitness.ModelFits.ModelFit
- setEqualVariance()
- setUnequalVariance()
- monteCarloDecision(pred_tafid_array, pred_tpsid_array, pred_tpfid_array, memoryStrength)
- calculateCumulativeFrequencyForCriterion(c)